

Compost como fuente de rizobacterias para estimular el crecimiento de plantas micropropagadas de caña de azúcar

Juan M. Cohuo-Colli¹, Juan J. Almaraz-Suarez^{1,*}, Joel Velasco-Velasco², Josafhat Salinas-Ruíz², Arturo Galvis-Spínola¹ y Julián Delgadillo-Martínez¹

- ¹ Colegio de Postgraduados, Campus Montecillo. Carretera México-Texcoco Km 36.5. C.P. 56230. Montecillo, Estado de México. México.
- ² Colegio de Postgraduados, Campus Córdoba. Carretera Federal Córdoba-Veracruz km 348, Congregación Manuel León, municipio de Amatlán de los Reyes. C.P. 94946. México.

Resumen

El compost es una fuente de microorganismos que pueden tener diferentes funciones en las plantas. El objetivo fue evaluar el efecto de cepas de rizobacterias aisladas de compost de cachaza y gallinaza en plantas micropropagadas de caña de azúcar durante la aclimatación en invernadero. Se aislaron cepas de compost de cachaza+gallinaza (C1 = 25:75 v/v; C2 = 50:50 v/v; C3 = 75:25 v/v y C4 = 100:0 v/v) por la técnica de diluciones y siembra en placa. Las cepas aisladas fueron evaluadas por su capacidad de producir auxinas y solubilizar fosfatos. Las mejores cepas se identificaron a nivel molecular y se inocularon en plántulas micropropagadas de caña de azúcar. Se aislaron 63 cepas bacterianas y se seleccionaron 14 que presentaron mecanismos de promoción de crecimiento. Las cepas de bacterias identificadas molecularmente tuvieron alta similitud a 7 géneros: Bacillus, Enterobacter, Acinetobacter Achromobacter, Paenarthrobacter, Weizmannia y Staphylococus. La inoculación de rizobacterias en plantas de caña de azúcar, durante la fase de aclimatación, mostró que Achromobacter xylosoxidans CPOC56 y Acinetobacter vivianii CPOC48 incrementaron significativamente la altura (40 %), área foliar (107 %), volumen radical (124 %), peso seco (93 %) y contenido de nitrógeno (115 %) y fósforo (133 %), comparado con el testigo. El compost de cachaza + gallinaza es un reservorio de rizobacterias promotoras de crecimiento vegetal, las 14 cepas seleccionadas con atributos benéficos pertenecieron a 11 especies distintas. Las cepas Achromobacter xylosoxidans CPOC56 y Acinetobacter vivianii CPOC48 son una buena opción para favorecer el crecimiento durante la fase de aclimatación de plantas micropropagadas de caña de azúcar.

Palabras clave: Inoculación, colonización, auxinas, cultivo de tejidos, plantas in-vitro.

Compost as a source of rizobacteria to stimulate the growth of micropropagated sugarcane plants

Abstract

Compost is a source of microorganisms with different functions in plants. The objective was to evaluate the effect of rhizobacterial strains isolated from filter cake and chicken manure compost on mi-

Cita del artículo: Cohuo-Colli J.M., Almaraz-Suarez J.J., Velasco-Velasco J., Salinas-Ruíz J., Galvis-Spínola A., Delgadillo-Martínez J. (2023). Compost como fuente de rizobacterias para estimular el crecimiento de plantas micropropagadas de caña de azúcar. ITEA-Información Técnica Económica Agraria 119(4): 327-342. https://doi.org/10.12706/itea.2023.013

^{*} Autor para correspondencia: jalmaraz@colpos.mx

cropropagated sugarcane plants during greenhouse acclimatization. Strains from composts obtained from mix of filter cake + chicken manure (C1 = 25:75 v/v; C2 = 50:50 v/v; C3 = 75:25 v/v and C4 = 100:0 v/v) were isolated by the technique of dilutions and spreading in plates. The isolated strains were evaluated for their ability to produce auxins and solubilize phosphates. The best strains were identified at the molecular level and inoculated into micropropagated sugarcane seedlings. 63 bacterial strains were isolated, of which 14 that presented growth promotion mechanisms were selected. The identified bacterial strains were highly similar to 7 genera: *Bacillus, Enterobacter, Acinetobacter, Achromobacter, Paenarthrobacter, Weizmannia*, and *Staphylococus*. The inoculation of rhizobacteria in sugarcane plants, during the acclimatization phase, showed that *Achromobacter xylosoxidans* CPOC56 and *Acinetobacter vivianii* CPOC48 significantly increased height (40 %), leaf area (107 %), root volume (124 %), dry weight (93 %), nitrogen (115 %) and phosphorus (133 %) content, compared with the control. The filter cake and chicken manure compost was a reservoir of plant growth-promoting rhizobacteria, the 14 selected strains with beneficial attributes belonged to 11 different species. The *Achromobacter xylosoxidans* CPOC56 and *Acinetobacter vivianii* CPOC48 strains are a good option to promote growth during the acclimatization phase of micropropagated sugarcane plants.

Keywords: Inoculation, colonization, auxins, tissue culture, *in-vitro* plants.

Introducción

La caña de azúcar es de gran importancia en el mundo con una producción de 1949 Mt en 2019, que ubica al cultivo por arriba de la producción alcanzada por maíz o trigo (FAO, 2021). Brasil e India concentran el 59 % de la producción y México ocupa el sexto lugar en producción de ese cultivo (FAO, 2021). Se estima que la producción de caña de azúcar seguirá creciendo a una tasa de 1 % anual debido a la demanda de azúcar (OCDE/FAO, 2021). El incremento de la producción de caña de azúcar implicará la necesidad de generar y propagar masivamente nuevas variedades para satisfacer la demanda. Sin embargo, los métodos convencionales de propagación vegetativa difícilmente lograrán cubrir esa demanda en corto tiempo.

La propagación *in vitro* de plantas mediante el cultivo de tejidos vegetales es una técnica utilizada para obtener plantas sanas de forma masiva, permite mayor tasa de propagación vegetal, producir individuos uniformes y controlar las condiciones ambientales para evitar la aparición de patógenos (Pasqual *et al.*, 2014). Actualmente hay un gran interés en el uso de la micropropagación para propagar masivamente nuevas variedades de caña de azúcar ya que se obtienen plantas en tiempos mucho más cortos (Lal et al., 2015). No obstante, la fase de aclimatación es guizá la etapa más difícil para las plantas micropropagadas, dado que es un proceso de supervivencia para aumentar crecimiento y reducir mortalidad de plantas, ya que son expuestas a estrés biótico y abiótico cuando son trasladadas a condiciones ex-vitro (Scortecci et al., 2012; Lopes et al., 2017). Se ha observado que el uso de microorganismos benéficos como las rizobacterias, promueven el crecimiento de plantas mediante funciones como solubilización de fosfato, fijación de nitrógeno y producción de reguladores de crecimiento que ayudan a las plantas a tolerar el estrés causado por diversos factores (Alam et al., 2019). Además, se ha mostrado que la inoculación de rizobacterias promotoras de crecimiento vegetal en caña de azúcar, ayudan a reducir la dosis de fertilizantes químicos aplicados a las plantas, haciéndolas más eficientes en la captación de nutrimentos del suelo (Khan et al., 2007; Gyaneshwar et al., 2012).

Por otra parte, la industria azucarera genera grandes cantidades de residuos, como la cachaza, proveniente principalmente del proceso de clarificación de los jugos de la caña. Países como India, generan de 3,6 a 3,9 millones de t de cachaza al año (Rasappan et al., 2015). El compost ha sido una alternativa para tratar estos residuos para obtener un producto estabilizado que funciona como un fertilizante orgánico y mejora las condiciones del suelo (Cunha-Queda et al., 2007; Romero-Yam et al., 2015). Además de ser una fuente de nutrientes, el compost representa un reservorio de microorganismos benéficos como las rizobacterias promotoras de crecimiento vegetal, tales como aquellas pertenecientes a la familia Bacillaceae, que han sido encontradas en compost de residuos de caña de azúcar (Estrada-Bonilla et al., 2017) o como las especies de Serratia plymuthica, Serratia grimesii y Achromobacter piechaudii (que han sido aisladas en diferentes tipos de compost; Samet et al., 2022). Aunque se tiene conocimiento sobre la importancia y beneficio de los microorganismos en los cultivos, pocos estudios se han enfocado en el uso de rizobacterias promotoras de crecimiento vegetal en la fase de aclimatación de plantas micropropagadas, por lo que el objetivo del presente trabajo fue evaluar el efecto benéfico de bacterias aisladas de compost de cachaza de caña mezclada con gallinaza, en el crecimiento de plantas micropropagadas de caña de azúcar durante la fase aclimatación en invernadero, cuantificado como altura, volumen radical, área foliar, biomasa y contenido de nutrientes.

Material y métodos

La presente investigación fue realizada en el Laboratorio de Microbiología de Suelos del Colegio de Postgraduados, Campus Montecillo, ubicado en la Carretera México-Texcoco Km 36,5, Montecillo, Texcoco, Estado de México y en el Colegio de Postgraduados Campus Córdoba, ubicado en Km 348 carretera federal Córdoba-Veracruz, congregación Manuel León, Municipio de Amatlán de los Reyes, Veracruz.

Origen y descripción del compost utilizado

El material utilizado fue compost obtenido de una mezcla de cachaza de caña de azúcar con gallinaza, en cuatro proporciones diferentes: C1 = 25 % cachaza y 75 % gallinaza (2.5:7.5 v/v); C2 = 50 % cachaza y 50 % gallinaza (5:5 v/v); C3 = 75 % cachaza y 25 % gallinaza (7.5:2.5 v/v); C4 = 100 % cachaza y 0 % gallinaza (10:0 v/v). Se recolectaron tres submuestras de la pila de compost, las cuales se mezclaron para obtener una muestra compuesta de 500 g por cada tipo de compost. Las muestras presentaron valores de pH que fluctuaron de 8 a 9,6. Los valores de materia orgánica fueron 26,3 a 37,9 %, mientras que, de carbono orgánico fueron de 15,3 a 21,97 %, el nitrógeno total osciló de 1,3 a 2,3 % y finalmente la relación C/N (carbono-nitrógeno) fluctuó de 9,5 a 11,5.

De las muestras de compost, se recolectaron submuestras de 10 q y se procesaron en el laboratorio para aislar cepas de rizobacterias por el método de diluciones y siembra en caja Petri. Las muestras se colocaron en botellas que contenían 90 mL de agua destilada estéril y se agitó por 20 min. A partir de esa dilución (10⁻¹) se realizaron diluciones decimales seriadas hasta 10⁻⁵. De cada dilución se recolectó una alícuota de 100 µL y se distribuyó en caja Petri que contenía medio de cultivo sólido. Las cajas se incubaron a 28 °C durante 72 h para obtener colonias de bacterias aisladas. Los medios de cultivo utilizados fueron: agar nutritivo (20 g de agar nutritivo Merck; 1000 mL de agua destilada estéril), Pikovskaya (10 g de Glucosa; 5 g de Ca (PO_4)₂; $0,5 \text{ g de }(\text{NH}_{a})\text{SO}_{a}; 0,2 \text{ g de KCl}; 0,1 \text{ g de MgSO}_{a},$ 7H₂O; 0,0002 g de MnSO₄; 0,0002 g de FeSO₄, 7H₂O; 0,5 g de extracto de levadura; 15 g de agar; 1000 mL de agua destilada estéril) (Pikovskaya, 1948) y Luria Bertani (LB) (10 g de triptona; 5 g de extracto de levadura; 5 g de NaCl; 1 g de triptófano; 15 g de agar; 1000 mL de agua destilada estéril). El aislamiento de las cepas de rizobacterias se llevó a cabo seleccionando por tamaño y color las colonias de rizobacterias crecidas en cada medio y se resembraron en agar nutritivo e incubaron durante 48 h.

Selección gruesa de cepas de rizobacterias por atributos promotores de crecimiento vegetal

Las cepas aisladas fueron sembradas en microplacas (microplates Costar 3591, Cornind, NY) de 96 pocillos que contenían 150 µL de medio liquido LB y después de 48 h de incubación a 28 °C, se le agregó a cada pocillo 150 µL de reactivo salkowski (2 % 0,5 M FeCl₃ en 35 % de ácido perclórico) y se incubó durante 30 min en oscuridad. El indicativo de producción de ácido indolacético es el cambio de coloración del medio, que va de un rosado tenue a rojo (Bric et al., 1991; Almaraz-Suarez et al., 2020). En el caso de cepas solubilizadoras de fosfato, se sembró 10 µL de inóculo de cada cepa en cajas Petri con medio de cultivo Pikovskaya (Pikovskaya, 1948) y se incubaron durante 48 h. La formación de un halo de color claro alrededor de la colonia fue el indicativo de solubilización de fosfato, que se evaluó a las 48 h.

Cuantificación de AIA y fosfato soluble

A partir de las pruebas cualitativas, se seleccionaron 14 cepas bacterianas. Estas cepas se evaluaron en medio líquido con la finalidad de determinar la cantidad de ácido indolacético que producen y la cantidad de fosfato que solubilizan. Con respecto a la capacidad de solubilizar fosfato, las cepas de bacterias se sembraron en tubos falcon de 15 mL en medio líquido Pikovskaya (Pikovskaya, 1948). Después fueron incubadas en agitación a 28 °C durante 7 días en un agitador marca Thermo scientific® modelo MAXO 400. Posteriormente, los cultivos bacterianos se centrifugaron a 7000 rpm durante 10 min y se filtraron en una membrana (Millex syringe filter, 0,22 µm, Durapore®), se recolectaron 150 µL de cada filtrado y se colocaron en microplacas (Microplates Costar 3591, Corning, NY) de 96 pocillos, añadiendo 50 µL de vanadato (NH₄VO₃ 0,25 % en 35 % HNO₃) y 50 µL de molibdato ((NH₄)₆MO₇O₂₄ al 5 %). Después de 5 min de reacción, las muestras fueron leídas en un espectrofotómetro (Synergy 2 microplate reader, Biotek Instruments, Inc.) a 420 nm (Almaraz-Suarez et al., 2020). La cantidad de fosfato soluble se calculó mediante una curva estándar elaborada con concentraciones de fosfato (0 µg mL⁻¹, 50 µg mL⁻¹, 100 µg mL⁻¹, 150 μg mL⁻¹, 250 μg mL⁻¹ y 300 μg mL⁻¹).

Para la producción de ácido indolacético (AIA), las cepas bacterianas fueron cultivadas en viales de 2 mL con medio Luria-Bertani líquido e incubadas durante 48 h a 28 °C en agitación (Thermo scientific® modelo MAXQ 400) a 180 rpm, se utilizaron dos grupos de tubos. De tal forma que un grupo de tubos con los cultivos bacterianos se centrifugaron a 7000 rpm durante 15 min y se filtraron en una membrana (Millex syringe filter, 0,22 µm, Durapore®) a las 24 h, se recolectaron 150 µL del sobrenadante de cada cultivo y se depositó en microplacas de 96 pocillos (Microplates Costar 3591, Corning, NY), adicionando 150 µL de reactivo Salkowski. A continuación se incubaron en oscuridad durante 30 min y se analizaron en un espectrofotómetro (Synergy 2 microplate reader, Biotek Instruments, Inc.) a 530 nm (Almaraz-Suarez et al., 2020). A las 48 h, el otro grupo de tubos se procesaron realizando el mismo procedimiento. La concentración de AIA, se determinó en función a una curva estándar con concentraciones de ácido indolacético (0 μ g mL⁻¹, 10 μ g mL⁻¹, $20 \ \mu g \ mL^{-1}$, $30 \ \mu g \ mL^{-1}$, $40 \ \mu g \ mL^{-1}$, $50 \ \mu g \ mL^{-1}$, 60 μg mL⁻¹, 70 μg mL⁻¹, 80 μg mL⁻¹ y 90 μg mL⁻¹).

Identificación molecular

El material genético de 14 cepas bacterianas fue obtenido a partir de cultivos jóvenes de 24 h y se realizó siguiendo el protocolo de extracción de DNA para bacterias mediante el método CTAB (Tris-HCl 100 mM, pH 8,0; EDTA 2H2O mM, CTAB 2 %; NaCl 1,4 M). Se amplificó un fragmento del gen ribosomal 16S ADNr, utilizando los iniciadores 8F (5'-AGA GTTTGATCCTGGCTCAG-3') y 1492R (5'-GGT TACCTTGTTACGACTT-3'). La mezcla de reacción de amplificación fue con regulador de la reacción en cadena de la polimerasa (PCR) y se basó en: buffer 5X, dNTP's 2,5 mM, vaya Tag ADN polimerasa (5U), ADN 100 ng. La PCR se realizó en un termociclador C100 Touch (Bio-Rad, USA) con una desnaturalización inicial de 95 °C durante 2 min; seguido de 30 ciclos de desnaturalización a 95 °C durante 1 min, alineamiento a 59 °C durante 30 s y la extensión a 72 °C durante 2 min, y una extensión final de un ciclo a 72 °C durante 10 min. Las amplificaciones se observaron en un gel de agarosa al 1,5 % teñido con colorante verde de ADN (Green-DNA dye, Bio Basic Inc., Canada). Posteriormente, los productos finales se purificaron con Exo-SAP-IT (Affymetrix, USA) de acuerdo a las instrucciones del fabricante. La secuenciación se llevó a cabo con el Genetic Analyzer modelo 3130 (Applied Biosystem, EE. UU) en ambas direcciones. Las secuencias correspondientes a la región 165 ADNr de cada una de las cepas, se editaron con el programa BioEdit v7,0,9,1 (Hall, 1999). Se hizo un análisis para encontrar regiones de similitud local entre secuencias con alineamientos significantes de cada aislamiento obtenido, para la región 16S ADNr en la plataforma BLAST_ nucleotide 2,2,19 del National Center for Biotechnology Informatio (NCBI) (Zhang et al., 2000). Finalmente, las secuencias de las bacterias se depositaron en la base de datos de GenBank del NCBI.

Efecto de cepas de bacterias inoculadas en plantas micropropagadas de caña de azúcar durante la fase de aclimatización en invernadero

La fase de aclimatación de plántulas de caña de azúcar se efectuó en el invernadero de cultivo de tejidos vegetales del Colegio de Postgraduados Campus Córdoba, Veracruz, en los meses de diciembre/2020-febrero/2021. Se seleccionaron 120 plántulas de caña de azúcar de la variedad "Mex 69-290" propagadas in vitro con edad de 20 días en invernadero (pre-aclimatación). Como sustrato se utilizó una mezcla de perlita con peat-moss v tezontle en una relación 1:1:1 v/v/v, esterilizada 3 veces en días no consecutivos a 120 °C durante 3 h en autoclave vertical. Las plantas seleccionadas fueron homogenizadas, dejando sólo un vástago y podadas en la parte aérea y en la raíz y después fueron trasplantadas en semilleros de 32 cavidades, siendo una planta por cavidad la unidad experimental. Se incluyeron 15 tratamientos (14 cepas bacterianas y un testigo sin inocular) con 8 repeticiones para cada tratamiento. Las cepas de bacterias fueron crecidas en caldo nutritivo durante 48 h hasta obtener una concentración de 10⁸ células mL⁻¹. Las plantas se inocularon a los 5 días después del trasplante añadiendo 2 mL de inóculo a las raíces con jeringas estériles de 5 mL. Las plantas fueron mantenidas durante dos semanas en un invernadero con 60 % de sombra, con malla sombra a 30±2 °C y humedad relativa del 60±10 % y luz natural. Posteriormente fueron transferidas a un invernadero con mayor iluminación con temperatura de 35±2 °C con humedad relativa del 30 % y luz natural. EL riego se realizó diariamente y se fertilizó dos veces a la semana con 15 mL de solución nutritiva al 10 % (Steiner, 1961). Las plantas fueron cosechadas a los 55 días después de la inoculación. Las variables evaluadas fueron: altura de planta, número de hojas, volumen de raíz (técnica de

desplazamiento de agua por raíz en probeta graduada), diámetro de tallo. El área foliar se determinó con la metodología descrita por Hermann y Camara (1999): $AF = C \times L \times 0,75$ \times (N + 2), donde; AF = área foliar; C = largo de la primera hoja completamente abierta; L = ancho de la primera hoja completamente abierta; 0,75 = factor de corrección de la hoja del cultivo; N = número de hojas totalmente abiertas con por lo menos 20 % de área verde; 2 = factor de corrección. Los tallos, hojas y raíces fueron secados hasta peso constante en un horno (Felisa, Modelo 242-A) a 70 °C durante 72 h y se pesaron en una balanza analítica (Sartorious Modelo Anlytic AC 210S, Ilinois, EUA). Finalmente, las muestras secas de tallos y hojas se molieron para determinar; contenido de nitrógeno (N), mediante el procedimiento semi-micro Kjeldahl (Etchevers, 1987), fósforo (P) por colorimetría de complejos molibdofosfóricos reducidos con ácido ascórbico (AOAC, 1980) y potasio (K) por fotometría de llama (Rodríguez y Rodríguez, 2015).

Diseño experimental y análisis estadístico

La producción de AIA y solubilización de fosfato se analizó estadísticamente en un diseño experimental completamente al azar con cuatro repeticiones. Se realizaron análisis de varianza y prueba de comparación de medias (Tukey, $\alpha = 0,05$) mediante el software estadístico R 4.0.2. (R Core Team, 2020), utilizando la librería agricolae y el entorno de desarrollo integrado Rstudio.

El experimento de invernadero con plantas micropropagadas se estableció en un diseño experimental completamente al azar con covariable (altura inicial de la planta), con ocho repeticiones. Los datos de crecimiento se procesaron estadísticamente y se realizó un análisis de covarianza con comparación de medias Ls-means en el paquete estadístico SAS 9.2.

Resultados y discusión

Aislamiento y caracterización de la actividad promotora de crecimiento de las cepas bacterianas

Se aislaron 63 cepas bacterianas, de las cuales 13 cepas fueron aisladas de compost C1, 10 cepas se obtuvieron de C2, 16 cepas se aislaron de C3 y 24 cepas fueron obtenidas de C4. Del total de cepas solo el 22 % mostraron la capacidad de producir ácido indolacético y 10,7 % presentaron el atributo de solubilizar fosfatos. Posteriormente, se seleccionaron 14 cepas que presentaron al menos un mecanismo de promoción de crecimiento. Estas cepas se evaluaron por su capacidad de producir ácido indolacético (AIA) y solubilizar fosfato.

La cepa CPOC12 produjo la mayor cantidad de ácido AIA con 14,7 μ g mL⁻¹ a las 24 h. Mientras que la cepa CPOC56 fue superior al resto de las cepas a las 48 h con una cantidad de AIA producida de 33,3 µg mL⁻¹. En cuanto a la solubilización de fosfato, la cepa CPOC48 mostró una gran capacidad de solubilizar fosfato con 257,59 µg mL⁻¹, seguido por las cepas CPOC49 v CPOC12 con 181,1 µg mL⁻¹ v 55,13 µg mL⁻¹ de fosfato solubilizado, respectivamente (Tabla 1). Al respecto varios estudios han demostrado que bacterias aisladas de rizosfera, residuos y partes de la planta de caña de azúcar, tienen la capacidad de producir AIA y solubilizar fosfato. Santos y Rigobelo (2021) aislaron 167 cepas de bacterias de la rizosfera de algunas variedades de caña de azúcar, de las cuales dos cepas de Enterobacter asburiae produjeron la mayor cantidad de AIA con alrededor de 56 μ g mL⁻¹, y una cepa de Bacillus thuringiensis tuvo la capacidad de solubilizar hasta 481 mg mL⁻¹ de fosfato. Mientras que, Morgado González et al. (2015), entre las cepas de rizobacterias que aislaron de caña de azúcar, observaron que Pseudomonas luteola produjo AIA a un nivel de hasta 117,3 µg mL⁻¹ y Stenotrophomonas maltophilia solubilizó 222,4 µg mL⁻¹

Tabla 1. Producción de ácido indolacético a las 24 y 48 h y fosfato soluble a los 7 días en cultivos de cepas de rizobacterias aisladas de compost.

Table 1. Production of indole acetic acid at 24 and 48 h and soluble phosphate at 7 days in cultures of rhizobacterial strains isolated from compost.

Cepas	Producción de ácido indolacético (AIA) µg mL ⁻¹		Fosfato soluble µg mL ⁻¹	
	24 h	48 h	(7 días)	
CPOC12	14,72 a	23,45 b	55,13 c	
CPOC49	9,13 ab	13,35 cd	181,15 b	
CPOC45	8,94 abc	17,12 bc	10,41 d	
CPOC5	8,07 abc	5,17 e	0,37 d	
CPOC56	5,92 bc	33,32 a	0,72 d	
CPOC36	5,15 bc	19,94 bc	0,56 d	
CPOC48	4,86 bc	5,31 e	257,59 a	
CPOC61	4,41 bc	9,64 de	0,53 d	
CPOC3	3,96 bc	20,17 bc	15,69 d	
CPOC7	2,93 bc	16,52 bcd	0,98 d	
CPOC32	2,74 bc	13,96 cd	0,91 d	
CPOC11	1,52 bc	19,68 bc	5,43 d	
CPOC57	1,05 bc	9,41 de	0,29 d	
CPOC22	0,87 c	18,35 bc	0,22 d	
CME	10,63	8,61	65,67	

Letras diferentes en la misma columna indican diferencias estadísticas significativas ($\alpha = 0,05$); CME = Cuadrado Medio del Error.

de fosfato. Algunos géneros de rizobacterias como *Acinetobacter* sp. tienen la capacidad de solubilizar hasta 682 µg mL⁻¹ de fosfato (Bharwad y Rajkumar, 2020). Los mecanismos de producción de AIA y la solubilización de fosfatos son aspectos importantes para determinar, ya que son características de las bacterias asociadas a la promoción de crecimiento vegetal (Glick, 2012).

Identificación molecular

El análisis de las secuencias de ADNr 16S amplificadas mostró que las 14 cepas con atributos de promoción de crecimiento tienen alta similitud a 7 géneros: el género Bacillus con mayor número de especies: Bacillus licheniformis (CPOC3, CPOC7, CPOC11), Bacillus pumilus (CPOC22) y Bacillus australimaris (CPOC36). Además, dos cepas pertenecían a especies de Enterobacter: Enterobacter cloacae (CPOC46) y Enterobacter hormaechei (CPOC57). De igual forma, se encontraron cepas pertenecientes a las especies de Acinetobacter pitti (CPOC12) y Acinetobacter vivianii (CPOC48). Las cepas CPOC56 y CPOC61 fueron identificadas como Achromobacter xylosoxidans, y finalmente las cepas CPOC32, CPOC6 y C49 como Paenarthrobacter sp., Staphylococus equorum y Weizmannia ginsengihumi, respectivamente (Tabla 2).

Efecto de cepas de bacterias inoculadas en plantas micropropagadas de caña de azúcar durante la fase de aclimatización

El análisis de covarianza mostró diferencias estadísticas significativas entre los tratamientos ($p \le 0,05$) con relación a las variables de crecimiento. Las plantas inoculadas con Achromobacter xylosoxidans CPOC56, Acinetobacter vivianii CPOC48, Bacillus licheniformis CPOC11 y Bacillus licheniformis CPOC3, mostraron los mayores efectos en las varia-

Tabla 2. Especies de rizobacterias aisladas de compost de cachaza de caña de azúcar con gallinaza. Table 2. Rhizobacterial species isolated from compost of sugarcane filter cake with poultry manure.

Compost	Clave de identificación	Identificada como	Máxima identidad	N°. De acceso al GenBank
C1	CPOC3	Bacillus licheniformis	100	ON982497
C3	CPOC5	Staphylococcus equorum	100	ON982498
C3	CPOC7	Bacillus licheniformis	100	ON982499
C3	CPOC11	Bacillus licheniformis	100	ON982500
C4	CPOC12	Acinetobacter pittii	100	ON982501
C4	CPOC22	Bacillus pumilus	100	ON982502
C4	CPOC32	Paenarthrobacter sp.	99,79	ON982503
C1	CPOC36	Bacillus australimaris	100	ON982504
C2	CPOC45	Enterobacter cloacae	99,93	ON982505
C4	CPOC48	Acinetobacter vivianii	99,93	ON982506
C1	CPOC49	Weizmannia ginsengihumi	100	ON982507
C1	CPOC56	Achromobacter xylosoxidans	99,93	ON982508
C2	CPOC57	Enterobacter hormaechei	99,93	ON982509
C3	CPOC61	Achromobacter xylosoxidans	99,93	ON982510

Compost C1 = 25 % cachaza + 75 % gallinaza; Compost C2 = 50 % cachaza + 50 % gallinaza; Compost C3 = 75 % cachaza + 25 % gallinaza; Compost C4 = 100 % cachaza + 0 % gallinaza.

bles de crecimiento evaluadas (Tabla 3). Las plantas inoculadas con *Achromobacter xylosoxidans* CPOC56 tuvieron una altura promedio de 8,3 cm, lo que significa un incremento del 40 % con respecto a plantas sin inocular (Testigo), igualmente presentaron mayor número de hojas. Cuatro cepas incrementaron significativamente el volumen radical con respecto al testigo. El mayor efecto se observó con la inoculación de *Achromobacter xylosoxidans* CPOC56 y *Acinetobacter vivianii* CPOC48, con incrementos significativos en el volumen de raíz de hasta 124 % y 81 % respectivamente, comparado con plantas testigo. Las plantas inoculadas con Achromobacter xylosoxidans CPOC56 presentaron la mayor área foliar con 101,6 cm², que representa un incremento de 107 % con respecto a plantas no inoculadas (Tabla 3). En cuanto a biomasa seca, las plantas inoculadas con Achromobacter xylosoxidans CPOC56 presentaron incrementos significativos del 93 % y 37 %, en peso seco de la parte aérea y la raíz, con respecto a plantas no inoculadas. Por otra parte, la cepa Acinetobacter viviannii CPOC48 incrementó el peso de la parte aé-

Tabla 3. Variables evaluadas en plantas micropropagadas de caña de azúcar inoculadas con rizobacterias, a los 55 días de aclimatación en invernadero.

Table 3. Variables evaluated in micropropagated sugarcane plants inoculated with rhizobacteria at 55 days of acclimatization in greenhouse.

Cepas	Altura (cm)	No. hojas	Volumen radical (cm ³)	Diámetro de tallo (mm)	Área foliar (cm²)
CPOC56	8,31 a	4,06 a	2,72 a	2,70 a	101,63 a
CPOC61	7,02 b	3,59 ab	1,54 cde	2,43 abc	56,16 bc
CPOC22	7,00 b	3,62 ab	1,85 bcd	2,25 bc	62,52 b
CPOC36	6,94 bc	3,80 ab	1,84 bcde	2,46 ab	55,78 bc
CPOC12	6,78 bc	3,58 ab	1,78 bcde	2,45 ab	55,03 bc
CPOC45	6,71 bcde	3,93 ab	1,92 bcd	2,33 abc	59,81 bc
CPOC3	6,67 bcde	3,74 ab	1,81 bcde	2,66 a	58,10 bc
CPOC48	6,63 bcde	4,05 a	2,20 ab	2,50 ab	55,66 bc
CPOC49	6,53 bcde	3,70 ab	2,05 bc	2.,43 ab	56,06 bc
CPOC32	6,46 bcde	3,93 ab	1,41 de	2,30 abc	62,63 b
CPOC11	6,30 bcde	4,04 a	1,68 bcde	2,20 bcd	57,24 bc
CPOC7	6,12 cde	3,85 ab	1,35 de	2,47 ab	66,12 b
CPOC5	6,12 cde	3,86 ab	1,53 cde	2,18 bcd	48,61 bc
CPOC57	5,84 e	3,85 ab	1,37 de	2,03 cd	41,46 c
Testigo	5,93 de	3,43 b	1,21 e	1,81 d	49,07 bc
CME	0,73	0,27	0,38	0,1591	399,65

Letras diferentes en la misma columna indican diferencias estadísticas significativas ($\alpha = 0,05$). CME = Cuadrado Medio del Error.

rea y raíz en 60 % y 39 %, respectivamente, comparados con el testigo (Tabla 4).

Diferentes estudios han mostrado que cepas selectas de rizobacterias incrementan el crecimiento de plantas de diferentes cultivos como pepino, tomate y gramíneas, incluyendo caña de azúcar (Castanheira *et al.*, 2014; Soares *et al.*, 2016; Abdel-Rahman *et al.*, 2017; Nascimento *et al.*, 2021). En plántulas de caña de azúcar se han observado incrementos significativos de altura y área foliar por efecto de la inoculación de cepas de las especies Pseudomonas luteola, Aeromonas salmonicida, Stenotrophomonas maltophilia, Bacillus cereus, Acinetobacter calcoaceticus, Acinetobacter sp. y Acinetobacter iwoffii (Morgado González et al., 2015; Hossain et al., 2020; Silva et al., 2021; Patel et al., 2022). En otros estudios se han observado incrementos en la biomasa seca de tallo y raíz de plántulas de caña de azúcar de hasta 30 % al ser inoculadas con Achromobacter spanius en comparación con plantas no inoculadas (Santos y Rigobelo, 2021). En trigo la inoculación

Tabla 4. Peso seco de parte aérea y de raíz de plantas micropropagadas de caña de azúcar inoculadas con rizobacterias, a los 55 días de aclimatación en invernadero.

Table 4. Dry weight of shoots and roots of micropropagated sugarcane plants inoculated with rhizobacteria, at 55 days acclimatization in greenhouse.

Cepas	Peso seco aéreo (g planta ⁻¹)	Peso seco de raíz (g planta ⁻¹)
CPOC56	0,30 a	0,21 a
CPOC48	0,20 b	0,18 ab
CPOC49	0,19 bc	0,16 bc
CPOC3	0,19 bc	0,18 ab
CPOC36	0,18 bc	0,17 b
CPOC45	0,19 bc	0,17 b
CPOC11	0,16 bc	0,15 bc
CPOC12	0,18 bc	0,16 bc
CPOC22	0,21 b	0,17 b
CPOC7	0,19 bc	0,17 b
CPOC32	0,18 bc	0,16 bc
CPOC5	0,16 bc	0,14 bc
CPOC61	0,18 bc	0,15 bc
CPOC57	0,14 c	0,13 c
Testigo	0,15 bc	0,15 bc
CME	0,002	0,001

Letras diferentes en la misma columna indican diferencias estadísticas significativas (α = 0,05), CME = Cuadrado Medio del Error. de Acinetobacter guillouiae EU-B2RT.R1 aumentó significativamente el peso de biomasa aérea y raíz con respecto al testigo (Hossain et al., 2020).

Estos efectos positivos en el crecimiento de las plantas, probablemente se debieron a alguna de las funciones que realizan las cepas de bacterias como producción de AIA y solubilización de fosfato. Con respecto a la producción de AIA, Achromobacter xylosoxidans CPOC56 fue capaz de producir 33,3 µg mL⁻¹ de AIA, mientras que, Acinetobacter vivianii CPOC48 produjo la cantidad más baja de AIA con 5,3 µg mL⁻¹. El AIA es una de las principales hormonas vegetales que las bacterias pueden producir y su efecto benéfico es sobre el crecimiento de la raíz, con lo que se aumenta la capacidad de absorción de nutrimentos y se manifiesta en mayor crecimiento de la planta (Spaepen y Vanderlyeden, 2011). Con respecto a la solubilización de fosfato, Achromobacter xylosoxidans CPOC56 solubilizó una mínima cantidad fosfato (0,72 µg mL-1) y Acinetobacter vivianii CPOC48 solubilizó la mayor cantidad (257,59 µg mL⁻¹). Estudios realizados en Vigna radiata indicaron que la inoculación de Acinetobacter sp. SK2, mejoró el crecimiento de las plantas debido a que solubiliza una gran cantidad de fosfato (682 µg mL⁻¹) (Bharwad y Rajkumar, 2020), además, fue capaz solubilizar potasio, el cual es un elemento importante para la activación de varias enzimas, que ayudan al crecimiento vegetal (Etesami et al., 2017). Govindarajan et al. (2006) y Pereira et al. (2019), encontraron que la inoculación de rizobacterias en plantas de caña de azúcar, estimula el desarrollo del sistema radical. Este incremento en el crecimiento de la raíz permite una mayor exploración del suelo y una eficiente absorción de agua y nutrientes e incluso mejora el uso de los fertilizantes nitrogenados (Schultz et al., 2016), lo cual conduce a un aumento en la producción de biomasa. Por consiguiente, estos dos mecanismos promotores de crecimiento, como la producción de ácido indolacético y solubilización de fosfato, pudieron influir principalmente, en mejorar el crecimiento de las plántulas de caña de azúcar en la fase de aclimatación. Según Lugtenberg y Kamilova (2009), las rizobacterias, además de ayudar al crecimiento de la planta mediante la nutrición, pueden aminorar el ataque de microorganismos patógenos, así como moderar los efectos deletéreos causados por los estreses bióticos y abióticos, como sucede en las plántulas de caña de azúcar producidas *in vitro*, al momento de adaptarlas en invernadero.

Con respecto al contenido de nutrimentos, el análisis de covarianza mostró diferencias estadísticas significativas entre tratamientos para N, P y K. Las plantas inoculadas con Achromobacter xylosoxidans CPOC56 fueron estadísticamente diferentes al resto de los tratamientos en el contenido de nitrógeno, esta cepa incrementó en 115 % el contenido de nitrógeno con respecto al tratamiento testigo (Tabla 5), posiblemente debido a que estas plantas desarrollaron un mayor volumen radical, con el que tuvieron mayor capacidad de exploración para captar mayor cantidad de este nutrimento. Santos y Rigobelo (2021) también encontraron una mayor concentración de nitrógeno (69 %) en plantas de caña de azúcar que incrementaron su volumen radical, al ser inoculadas con Achromobacter spanius IP23 comparado con plantas no inoculadas. En cuanto al fósforo, la mayor concentración se observó en plantas inoculadas con Bacillus licheniformis CPOC11, con un incremento de 133 %, comparado con el testigo (Tabla 5). Este resultado puede atribuirse a la capacidad de la cepa de solubilizar fosfato (5,43 µg mL⁻¹). El contenido de fósforo en parte aérea es importante, ya que este nutrimento participa en varias funciones importantes como la síntesis de componentes celulares, de fosfolípidos, nucleótidos, entre otros (Taiz et al., 2015). Rosa et al. (2020), encontraron que la inoculación de plantas de

Cepas	N (mg planta ⁻¹)	P (mg planta ⁻¹)	K (mg planta ⁻¹)
CPOC56	4,61 a	0,04 e	2,79 ab
CPOC48	3,03 b	0,03 e	2,19 bcd
CPOC49	2,72 b	0,09 b	3,65 a
CPOC7	2,71 b	0,06 bcd	2,12 bcd
CPOC45	2,68 b	0,06 bcd	1,68 cd
CPOC36	2,66 b	0,07 bc	2,56 bc
CPOC3	2,60 b	0,05 cde	1,91 bcd
CPOC61	2,52 b	0,08 b	1,89 bcd
CPOC22	2,52 b	0,07 bc	2,80 ab
CPOC12	2,28 b	0,04 de	1,84 bcd
CPOC11	2,11 b	0,12 a	2,11 bcd
CPOC5	2,11 b	0,05 cde	1,94 bcd
CPOC32	2,04 b	0,05 cde	1,48 d
CPOC57	1,76 b	0,04 e	1,61 cd
Testigo	2,14 b	0,05 cde	1,74 cd
CME	0,59	0,0002	0,33

Tabla 5. Contenido de nutrientes (N, P, K) en plantas micropropagadas de caña de azúcar inoculadas con rizobacterias, a los 55 días de aclimatación en invernadero. *Table 5. Nutrient content (N, P, K) in micropropagated sugarcane plants inoculated with rhizobacteria at 55 days of acclimatization in greenhouse.*

Letras diferentes en la misma columna indican diferencias estadísticas significativas ($\alpha = 0,05$), **CME** = Cuadrado Medio del Error.

caña de azúcar con *Bacillus subtilis y Pseudomonas flourescens* junto con dosis bajas de fósforo, aumentaron la concentración de fósforo en hojas. Asimismo, Dos Santos *et al.* (2020) encontraron que la inoculación de bacterias en dos variedades de plantas de caña de azúcar y utilizando solución nutritiva Hoagland con dosis baja en nitrógeno, aumentó la concentración de fósforo y potasio, en comparación con plantas no inoculadas, lo cual puede estar ocurriendo en este experimento al utilizar solución nutritiva al 10 %, lo que indica que los nutrimentos son absorbidos de manera eficiente con ayuda de las bacterias. Por otra parte, el mayor contenido de potasio se encontró en plantas inoculadas con *Weizmannia ginsengihumi* CPOC49, seguido de *Achromobacter xylosoxidans* CPOC56 y *Bacillus safensis* CPOC22, con incrementos en las concentraciones de 108 %, 60 % y 59 % con respecto al testigo (Tabla 5). El potasio es otro de los nutrientes importantes para el crecimiento y buen desarrollo de las plantas, siendo uno de los nutrimentos almacenados en grandes cantidades por las plantas de caña de azúcar, después del nitrógeno (Rossetto *et al.*, 2010). En algunos estudios se ha demostrado que algunas bacterias, tales como el género *Achromobacter* sp. tienen la capacidad de solubilizar potasio (Santos y Rigobelo, 2020), con lo que este nutrimento puede estar disponible para ser absorbido por las plantas.

Además de las características mencionadas, probablemente las cepas poseen otros atributos que necesitan ser evaluadas y que no fueron estudiadas en esta investigación, tales como la formación de biolfims. Se ha observado que bacterias de los géneros Acinetobacter sp. y Achromobacter sp. tienen la capacidad de producir biofilms, cuando entran en contacto con algunos cultivos, incluso con plantas de caña de azúcar (Syed-Ab-Rahman et al., 2018; Vyas et al., 2018). Souza et al. (2016) destaca que la etapa de crecimiento es otro factor que influye en la respuesta de la interacción planta-rizobacterias, ya que colonizan los órganos de la planta en las primeras etapas de desarrollo. Por otra parte, Matoso et al. (2020) observaron que en la respuesta a la inoculación de plántulas de caña de azúcar influye la variedad del cultivo y el tipo de sustrato que se utiliza.

Conclusiones

Las 14 cepas de bacterias seleccionadas pertenecieron a siete géneros; *Bacillus, Enterobacter, Acinetobacter, Achromobacter, Paenarthrobacter, Weizmannia y Staphylococus*. La mayor producción de ácido indolacético (AIA) se observó a las 48 h y diez cepas produjeron la mayor cantidad de AIA con valores que fluctuaron de 13,35 µg mL⁻¹ a 33,3 µg mL⁻¹. Cinco cepas mostraron mayor capacidad de solubilizar fosfato con valores que van de 74,9 µg mL⁻¹ a 397,5 µg mL⁻¹. Los resultados del experimento con plantas micropropagadas de caña de azúcar mostraron efectos positivos de la inoculación, principalmente con Achromobacter xylosoxidans CPOC56, la cual mostró incrementos en la altura (40 %), volumen radical (124 %), diámetro de tallo (49 %), área foliar (107 %) y contenido de nitrógeno (115 %) en las plantas. Los resultados de la presente investigación ponen en manifiesto que el compost de cachaza de caña de azúcar mezclada con gallinaza (25/75 v/v) es una fuente de cepas de rizobacterias con capacidad para incrementar el crecimiento de plántulas micropropagadas de caña de azúcar. Además, indica que la cepa bacteriana Achromobacter xylosoxidans CPOC56 podría tener el potencial de ser utilizada para la aclimatación y crecimiento de plantas in vitro de caña de azúcar en invernadero.

Referencias bibliográficas

- Abdel-Rahman H.M., Salem A.A., Moustafa M., El-Garhy H.A. (2017). A novice Achromobacter spp. EMCC1936 strain acts as a plant-growthpromoting agent. Acta Physiologiae Plantarum 39(2): 1-15. https://doi.org/10.1007/s11738-017-2360-6.
- Alam I.T., Nesa S.R., Alam K.M., Begum A., Akhter H. (2019). Phenotypic and molecular characterization of diazotrophic bacteria associated with sugarcane in Bangladesh. Organic Agriculture 9(3): 331-343. https://doi.org/10.1007/ s13165-018-0232-z.
- Almaraz-Suarez J.J., Pineda-Mendoza D.Y., Heredia-Acuña C. (2020). Métodos prácticos para el estudio de rizobacterias promotoras del crecimiento vegetal. En: Microbiología aplicada a la Agricultura y Agroecosistemas, Principios y Técnicas para su Investigación (Ed. Ferrera C.R., Delgadillo M.J., Alarcón A., Alvarado L.J., Pérez M.J., Almaraz S.J.J.), pp. 227-240. Primera edición. Editorial del Colegio de Postgraduados.
- AOAC (1980). Official Methods of Analysis (Ed. Horwitz W.), 13th Ed. Association of Official Analytical Chemists. Washington, D.C., USA. 387 p.

- Bharwad K., Rajkumar S. (2020). Modulation of PQQ-dependent glucose dehydrogenase (mGDH and sGDH) activity by succinate in phosphate solubilizing plant growth promoting *Acinetobacter* spp. SK2. 3.BioTech 10(1): 1-11. https:// doi.org/10.1007/s13205-019-1991-2
- Bric J.M., Bostock R.M., Silverstone S.E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57(2): 535-538. https://doi.org/10.1128/ aem.57.2.535-538.1991
- Castanheira N., Dourado A.C., Alves P.I., Cortes-Pallero A.M., Delgado-Rodriguez A.I., Prazeres A., Borges N., Sanchçéz C., Barreto Crespo M.T., Fareleira P. (2014). Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiological Research 169(9-10): 768-779. https://doi.org/10.1016/j.micres.2013.12.010.
- Cunha-Queda A.C., Ribeiro H.M., Ramos A., Cabral F. (2007). Study of biochemical and microbiological parameters during composting of Pine and *Eucalyptus* bark. Bioresource Technology 98(17): 3213-3220. https://doi.org/10.1016/j. biortech.2006.07.006.
- Dos Santos S.G., Da Silva Ribeiro F., Alves G.C., Santos L.A., Reis V.M. (2020). Inoculation with five diazotrophs alters nitrogen metabolism during the initial growth of sugarcane varieties with contrasting responses to added nitrogen. Plant and Soil 451(1): 25-44. https://doi.org/10. 1007/s11104-019-04101-1.
- Estrada-Bonilla G.A., Lopes C.M., Durrer A., Alves P.R.L., Passaglia N., Cardoso E.J. (2017). Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste. Systematic and Applied Microbiology 40(5): 308-313. https://doi.org/10.1016/j.syapm.2017.05.003.
- Etchevers J.D. (1987). Determinación de nitrógeno en suelos. En: Análisis químico para evaluar la fertilidad del suelo (Ed. Aguilar S.A., Etchevers J.D., Castellanos R.J.Z.), pp. 45-83. Montecillo, Texcoco, Edo. De México. Sociedad Mexicana de la Ciencia del Suelo.
- Etesami H., Emami S., Alikhani H.A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms,

promotion of plant growth, and future prospects: A review. Journal of Soil Science and Plant Nutrition 17(4): 897-911. http://dx.doi.org/ 10.4067/S0718-95162017000400005.

- FAO (2021). World Food and Agriculture-Statistical Yearbook 2021. Roma, Italia. 368 pp. https://doi.org/10.4060/cb4477en.
- Glick B.R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012: 963401. https://doi.org/10.6064/ 2012/963401.
- Govindarajan M., Balandreau J., Muthukumarasamy R., Revathi G., Lakshminarasimhan C. (2006). Improved yield of micropropagated sugarcane following inoculation by endophytic *Burkholderia vietnamiensis*. Plant and Soil 280: 239-252. https://doi.org/10.1007/s11104-005-3223-2.
- Gyaneshwar P., Nares Kumar G., Parkeh L.J., Poole P.S. (2012). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245(1): 83-93. http://dx.doi.org/10.1023/A:10 20663916259.
- Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 / NT. Nucleid Acids Symposium Series. 41: 95-98.
- Hermann E.R., Câmara G.M.S. (1999). Um método simples para estimar a área foliar de cana-deaçúcar. Revista da STAB 17(5): 32-34.
- Hossain G.M.A., Solaiman A.R.M., Karim A.J.M.S., Rahman G.K.M.M., Mia M.A.B. (2020). Influence of diazotrophic bacteria on growth and biomass production of sugarcane *in vitro*. International Journal of Current Microbiology and Applied Sciencies 9(3): 3077-3088. https://doi. org/10.20546/ijcmas.2020.903.353.
- Khan M.S., Zaidi A., Wani P.A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agronomy for Sustainable Development 27(1): 29-43. https:// doi.org/10.1051/agro:2006011.
- Lal M., Tiwari A.K., Gupta G.N., Kavita U.P. (2015). Commercial scale micropropagation of sugarcane: constraints and remedies. Sugar Tech 17(4): 339-347. https://doi.org/10.1007/s12355-014-0345-y.

- Lopes E.A.P., Brayner F.A., Alves L.C., Antunes J.E.L., Oliveira J.P., Santiago A.N.D., Figueiredo M.V.B. (2017). Acclimatization of *Manihot esculenta* crantz seedlings inoculated *in vitro* with plant growth-promoting bacteria. Advances in Plants and Agriculture Research 7(5): 377-386. https:// doi.org/10.15406/apar.2017.07.00270.
- Lugtenberg B., Kamilova F. (2009). Plant-growth promoting rhizobacteria. Annual Review of Microbiology 63: 541-556. https://doi.org/10.1146/ annurev.micro.62.081307.162918.
- Matoso E.S., Reis V.M., Giacomini S.J., Silva M.T.D., Avancini A.R., Silva S.D.A. (2020). Diazotrophic bacteria and substrates in the growth and nitrogen accumulation of sugarcane seedlings. Scientia Agricola 78(1): e20190035. https://doi. org/10.1590/1678-992x-2019-0035.
- Morgado González A., Espinosa Victoria D., Gómez Merino F.C. (2015). Efficiency of plant growth promoting rhizobacteria (PGPR) in sugarcane. Terra Latinoamericana 33(4): 321-330.
- Nascimento F.X., Glick B.R., Rossi M.J. (2021). Multiple plant hormone catabolism activities: an adaptation to a plant associated lifestyle by *Achromobacter* spp. Environmental Microbiology Reports 13(4): 533-539. https://doi.org/10. 1111/1758-2229.12987.
- OCDE/FAO (2021). OCDE-FAO Agricultural Outlook 2021-2030, OECD Publishing, Paris, Francia. https://doi.org/10.1787/19428846-en.
- Pasqual M., Rodrigues Soares J.D., Rodrigues F.A. (2014). Tissue culture applications for the genetic improvement of plants. En: Biotechnology and Plant Breeding: Applications and Approaches for Developing Improved Cultivars, (Ed. Borem A, Fritsche-Neto R), pp. 157-199. Academic Press, São Paulo, Brazil. https://doi.org/ 10.1016/B978-0-12-418672-9.00007-6.
- Patel P., Gajjar H., Joshi B., Krishnamurthy R., Amaresan N. (2022). Inoculation of salt-tolerant Acinetobacter spp (RSC9) improves the sugarcane (Saccharum sp. hybrids) growth under salinity stress condition. Sugar Tech 24(2): 494-501. https://doi: 10.1007/s12355-021-01043-w.
- Pereira W., Silva S.J., Schultz N., Massena Reis V. (2019). Sugarcane productivity as a function of nitrogen fertilization and inoculation with dia-

zotrophic plant growth-promoting bacteria. Sugar Tech 21(1): 71-82. https://doi.org/10.1007/ s12355-018-0638-7.

- Pikovskaya R.I. (1948). Mobilization of phosphorus in soil in conection with the vital activity of some microbial species. Mikrobiologiy 17: 362-370.
- Rasappan K., Kumar A., Santhosh P. (2015). Studies on sugarcane pressmud and distillery wastes as biofertilizer through composting. International Journal Chemical Sciences 13(3): 1333-1344.
- R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rodríguez F.H., Rodríguez A.F. (2015). Métodos de análisis de suelos y plantas: criterios de interpretación. 3ª ed. México, trillas, UANL, 288 pp.
- Romero-Yam L.A., Almaraz-Suarez J.J., Velasco-Velasco J., Galvis-Spinola A., Gavi-Reyes F. (2015). Microbial dynamics during composting of filter cake reactivated with chicken manure. Revista Chapingo Serie Horticultura 21(1): 21-31. https://doi.org/10.5154/r.rchsh.2013.09.032.
- Rosa P.A.L., Mortinho E.S., Jalal A., Galindo F.S., Buzetti S., Fernandes G.C., Neto M.B., Pavinato P.S., Teixeira Filho M.C.M. (2020). Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Frontiers in Environmental Science 8(32): 1-18. https://doi.org/10.3389/fenvs.2020.00032.
- Rossetto R., Días F.L.F., Vitti A.C., Prado J., Junior P.Q. (2010). Fósforo. En: Cana de açúcar (Ed. Dinardo-Miranda L.L., Vasconcelos A.C.M., Landell, M.G.A.), pp. 71-281. Instituto Agronômico, Campinas, Brazil.
- Samet M., Ghazala I., Karray F., Abid C., Chiab N., Nouri-Ellouz O., Sayadi S., Gargouri-Bouzid R. (2022). Isolation of bacterial strains from compost teas and screening of their PGPR properties on potato plants. Environmental Science and Pollution Research 29: 75365-75379. https:// doi.org/10.1007/s11356-022-21046-8.
- Santos R.M.D., Rigobelo E.C. (2020). Selection of Saccharum spp. rhizobacteria with growth-promoting properties using PCA analysis. Australian Journal of Crop Science 14(7): 1186-1194. https://doi.org/10.21475/ajcs.20.14.07.p2698.

- Santos R.M.D., Rigobelo E.C. (2021). Growth-promoting potential of rhizobacteria isolated from sugarcane. Frontiers in Sustainable Food Systems 5: 1-12. https://doi.org/10.3389/fsufs.2021.596269.
- Scortecci K.C., Creste S., Calsa J.T., Xavier M.A., Landell M.G., Figueira A., Benedito V.A. (2012). Challenges, opportunities and recent advances in sugarcane breeding. Plant Breeding. 1: 267-296. https://doi.org/10.5772/28606.
- Schultz N., Pereira W., Reis V.M., Urquiaga S.S. (2016). Produtividade e diluição isotópica de ¹⁵N em cana-de-açúcar inoculada com bactérias diazotróficas. Pesquisa Agropecuária Brasileira. 51: 1594-1601. https://doi.org/10.1590/S0100-204X2016000900059
- Silva J.C.D., Santos L.D.S., Faria P.S.A., Silva F.G., Rubio Neto A., Martins P.F., Selari P.J.R.G. (2021). Multifunctional characteristics of *Acinetobacter Iwoffii* Bac109 for growth promotion and colonization in micropropagated sugarcane. Pesquisa Agropecuária Tropical. 51: 1-10. https:// doi.org/10.1590/1983-40632021v5169373.
- Soares M.A., Li H.Y., Kowalski K.P., Bergen M., Torres M.S., White J.F. (2016). Functional role of bacteria from invasive *Phragmites australis* in promotion of host growth. Microbial Ecology 72(2): 407-417. https://doi.org/10.1007/s00248-016-0793-x.
- Souza R.S.C., Okura V.K., Armanhi J.S.L., Jorrín B., Lozano N., Silva M.J., Gonzalez-Guerrero M., Araujo L.M., Verza N.C., Bagheri H.C., Imperial J., Arruda P. (2016). Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports 6: 28774. https://doi.org/10.1038/srep28774.

- Spaepen S., Vanderleyden J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology 3(4): 1-15. https:// doi.org/10.1101/cshperspect.a001438.
- Steiner A.A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15(2): 134-154. https:// doi.org/10.1007/BF01347224.
- Syed-Ab-Rahman S.F., Carvalhais L.C., Chua E., Xiao Y., Wass T.J., Schenk P.M. (2018). Identification of soil bacterial isolates suppressing different *Phytophthora* spp. and promoting plant growth. Frontiers in Plant Science 9(1502): 1-18. https://doi.org/10.3389/fpls.2018.01502.
- Taiz L., Zeiger E., Møller I.M., Murphy A. (2015). Plant physiology and development, 6th. Ed. Sinauer Associates Incorporated, LA, California, U.S.A. 896 pp.
- Vyas P., Kumar D., Dubey A., Kumar A. (2018). Screening and characterization of *Achromobacter xylosoxidans* isolated from rhizosphere of *Jatropha curcas* L. (energy crop) for plantgrowth-promoting traits. Journal of Advanced Research in Biotechnology 3(1): 1-8. http://dx. doi.org/10.15226/2475-4714/3/1/00134.
- Zhang Z., Schwartz S., Wagner L., Miller W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7: 203-214. http://doi.org/10.1089/10665270050081478.

(Aceptado para publicación el 15 de septiembre de 2023)